

Features

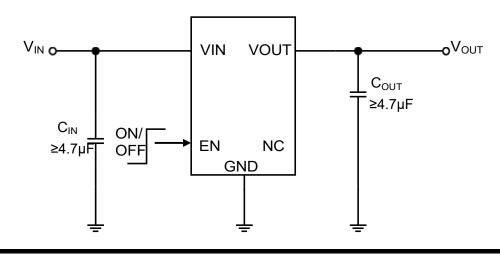
- Low power consumption:0.3uA (Typ.)
- Low voltage drop: 100mV@100mA@VOUT=3.3V(Typ.)
- High Output Current: ≥500mA
- Low temperature coefficient
- Integrated Short-Circuit Protection
- Over-Temperature Protection

Applications

- Battery-powered equipment
- Communication equipment

- High input voltage (up to 7V)
- Output voltage accuracy: tolerance ±1%
- Build-in Enable/Output Current Limit circuit
- SOT23-5、SOT23-3、SOT89-3L、DFN1x1-4L package
- PSRR=70dB@1KHz
- Support Fixed Output Voltage: 1.0v/1.2v/1.5v/1.8v/2.5v/2.8v/3.0v/3.3v/3.6v/5.0v
- Portable games
- Cameras, Video cameras

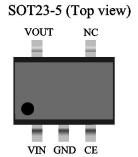
General Description

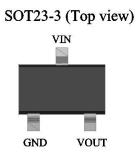

The HE9073 series are highly accurate, low noise, CMOS LDO Voltage Regulators. Offering low output noise, high ripple rejection ratio, low dropout and very fast turn-on times, the HE9073 series is ideal for today's cutting edge mobile phone. Internally the HE9073 includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators. The output voltage is set by current trimming. Voltages are selectable in 100mV steps within a range of 1.2V to 5.0V.

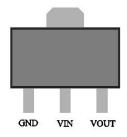
Order Information

HE9073(12)3(4)5

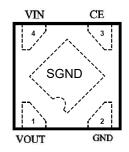
Designator	Symbol	Description
1	А	Standard
23	Integer	Output Voltage(1.2~5.0V)
	D4	Package:DFN1x1-4L
	Р	Package:SOT89
(4)	М	Package:SOT23-3
	M5	Package:SOT23-5
5	R RoHS / Pb Free	
	G	Halogen Free


Application Circuits




HE9073 0.3uA IQ Series High Speed Low Noise LDO

Pin Assignment



SOT89 (Top view)

DFN1x1-4L (TOP view)

Selection Table

Part No.	Output Voltage	Package	Marking
HE9073A12M5R	1.2V	SOT23-5	
HE9073A15M5R	1.5V	SOT23-5	
HE9073A18M5R	1.8V	SOT23-5	
HE9073A25M5R	2.5V	SOT23-5	
HE9073A28M5R	2.8V	SOT23-5	
HE9073A30M5R	3.0V	SOT23-5	
HE9073A33M5R	3.3V	SOT23-5	Refer to Marking rule
HE9073A36M5R	3.6V	SOT23-5	
HE9073A50M5R	5.0V	SOT23-5	
HE9073A12MR	1.2V	SOT23-3	
HE9073A15MR	1.5V	SOT23-3	
HE9073A18MR	1.8V	SOT23-3	
HE9073A25MR	2.5V	SOT23-3	

Selection Table

Part No.	Output Voltage	Package	Marking
HE9073A28MR	2.8V	SOT23-3	
HE9073A30MR	3.0V	SOT23-3	
HE9073A33MR	3.3V	SOT23-3	
HE9073A36MR	3.6V	SOT23-3	
HE9073A50MR	5.0V	SOT23-3	
HE9073A30PR	3.0V	SOT89	
HE9073A33PR	3.3V	SOT89	
HE9073A50PR	5.0V	SOT89	Refer to Marking rule
HE9073A12D4R	1.2V	DFN1x1-4L	
HE9073A15D4R	1.5V	DFN1x1-4L	
HE9073A18D4R	1.8V	DFN1x1-4L	
HE9073A25D4R	2.5V	DFN1x1-4L	
HE9073A28D4R	2.8V	DFN1x1-4L	
HE9073A30D4R	3.0V	DFN1x1-4L	
HE9073A33D4R	3.3V	DFN1x1-4L	

Absolute Maximum Ratings (1) (2)

Paramete	er	Symbol	Maximum Rating	Unit	
		Vin	V _{SS} -0.3~V _{SS} +9.0	V	
Input Volta	ige	Von/off	V _{SS} -0.3~V _{IN} +0.3	V	
Output Cur	rent	Ιουτ	550	mA	
Output Volt	age	Vouт	V _{SS} -0.3~V _{IN} +0.3	V	
	SOT23-3		400	mW	
	SOT23-5	Pd	450		
Power Dissipation	SOT89	Pu	500	11100	
	DFN1x1-4L		400		
	SOT23-3		250	°C/W	
Thermal Resistance	SOT23-5	R _{0JA} ⁽³⁾	220	°C/W	
Thermal Resistance	SOT89	(Junction-to-ambient thermal resistance)	200	°C/W	
	DFN1x1-4L		250	°C/W	
Operating Temperature		Topr	-40~85	°C	
Storage Temp	erature	Tstg	-40~125	°C	
Soldering Temperature & Time		Tsolder	260 ℃, 10 s		

Note (1): Exceeding these ratings may damage the device.

Note (2): The device is not guaranteed to function outside of its operating conditions

Note (3): The package thermal impedance is calculated in accordance to JESD 51-7.

ESD Ratings

Item	Description	Value	Unit
	Human Body Model (HBM)		
V(ESD-HBM)	ANSI/ESDA/JEDEC JS-001-2014	±4000	V
	Classification, Class: 2		
	Charged Device Mode (CDM)		
V(ESD-CDM)	ANSI/ESDA/JEDEC JS-002-2014	±200	V
	Classification, Class: C0b		
l	JEDEC STANDARD NO.78E APRIL 2016	1450	
LATCH-UP	Temperature Classification, Class: I	±150	mA

ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

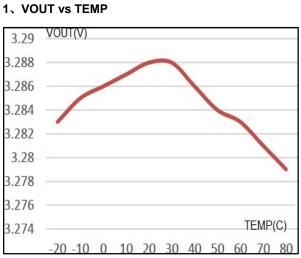
Recommended Operating Conditions

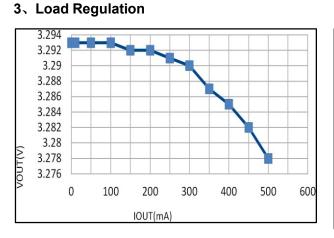
Parameter	MIN.	MAX.	Units
Supply voltage at VIN	2.0	7.0	V
Operating junction temperature range, Tj	-40	125	°C
Operating free air temperature range, TA	-25	85	°C

Electrical Characteristics

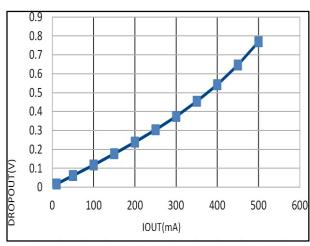
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Units
V_{IN}	Input Voltage		2		7	V
I _Q	Quiescent Current	V _{IN} > V _{OUT} ,EN=V _{IN} No load	_	0.3	0.7	μΑ
V _{OUT}	Output Voltage	I _{OUT} =1mA	-1.0		+1.0	%
I _{SD}	Shutdown Ground Current	V _{EN} =0V			0.1	μΑ
I _{LEAK}	V _{OUT} Shutdown Leakage Current	$V_{OUT} = 0V$			0.1	μΑ
Iout_max	Output Current	V_{IN} - V_{OUT} =0.5V		500		mA
N		$I_{OUT} = 100 \text{mA}$ $V_{OUT} = 3.3 \text{V}$	_	100	120	mV
Vdrop	Dropout Voltage ⁽¹⁾	I _{OUT} =200mA V _{OUT} =3.3V		200	250	mV
ΔLOAD	Load Regulation	V _{IN} =V _{OUT} +1V 1mA≤I _{OUT} ≤300mA	_	20	30	mV
ΔLINE	Line Regulation	$I_{OUT}=1mA,$ $V_{OUTNOM}+0.5V \le V_{IN} \le 7V$	_	0.1	0.15	%/V
I _{LIMIT}	Current Limit	V _{IN} =5V		550	_	mA
DCDD		I _{OUT} =100mA f=10KHz		65		dB
PSRR	Power Supply Rejection Ratio	I _{OUT} =100mA f=1KHz		70		dB
Ishort	Short /Start Load Current	RL=1Ω		90		mA
V_{IH}	EN Threshold Voltage,Logic-High	V _{IN} =5.0V, I _{OUT} =1mA	1.2			V
V _{IL}	EN Threshold Voltage,Logic-Low	V _{IN} =5.0V	_		0.4	V
e _{NO}	Output Noise Voltage	10Hz to 100kHz C _{OUT} =1µF	_	100		μ ^V RMS
T _{SD}	Thermal Shutdown Temperature			160		°C
ΔT_{SD}	Thermal Shutdown Hysteresis			20	_	°C

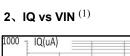
(At $T_{A=25}$ °C, $C_{IN}=1$ uF, $V_{IN}=V_{OUT}+1.0$ V, $V_{OUT}=3.3$ V, $C_{OUT}=1$ µF, unless otherwise noted)

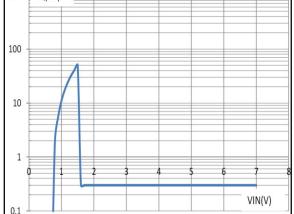

Note: (1) Dropout Voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value.

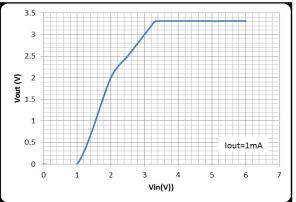

HE9073 0.3uA IQ Series High Speed Low Noise LDO

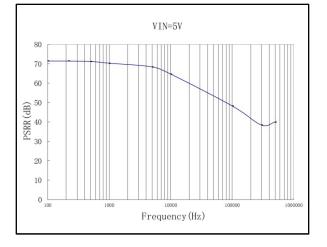
Typical Performance Characteristics


Test Condition: $T_{A=}25^{\circ}C$, unless otherwise note

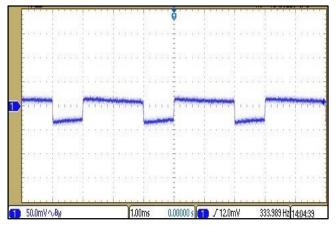



-- -- ----

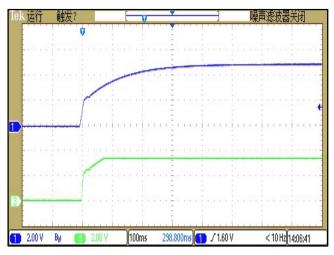

5、Dropout Voltage vs Load Current

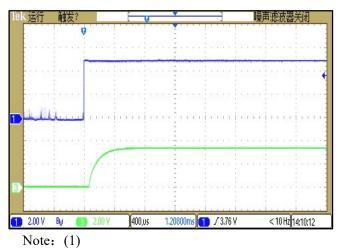


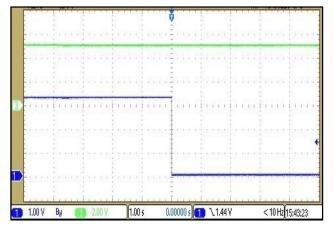
4、Line Regulation

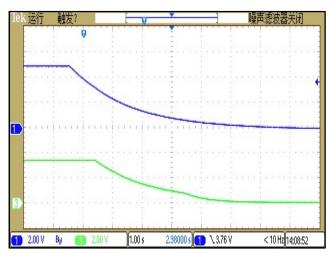


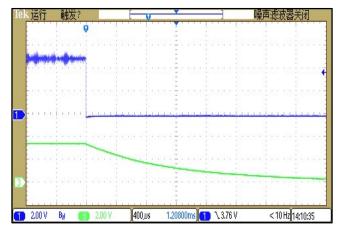
6、PSRR




7、 Load Transient Response


9、Power-On


11、Enable


8、Short Output & Over-Current Response

10、Power-Off

12、Disable

HE9073 0.3uA IQ Series High Speed Low Noise LDO

Operational Explanation

<Output Voltage Control>

The P-channel MOSFET is connected to the Vout pin, driven by the subsequent output signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The IC's internal circuitry can shut-down by the CE pin's signal

<Low ESR Capacitors>

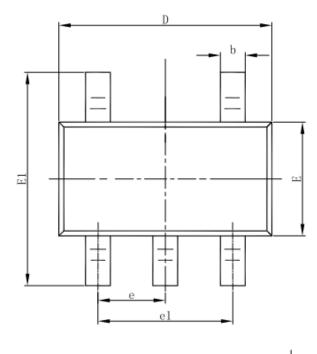
With the HE9073 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (VOUT) and the GND pin. Please use an output capacitor with a capacitance value of at least 10uF. Also, please connect an input capacitor (CIN) of 10uF between the VIN pin and the GND pin in order to ensure a stable power input. Stable phase compensation may not be ensured if the capacitor runs out capacitance when depending on bias and temperature. In case the capacitor depends on the bias and temperature, please make sure the capacitor can ensure the actual capacitance.

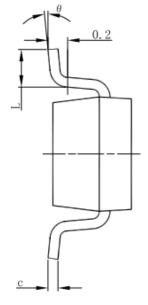
<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the HE9073 series. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation. We suggest that you use this IC with either a VIN voltage or a VSs voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

Notes on Use

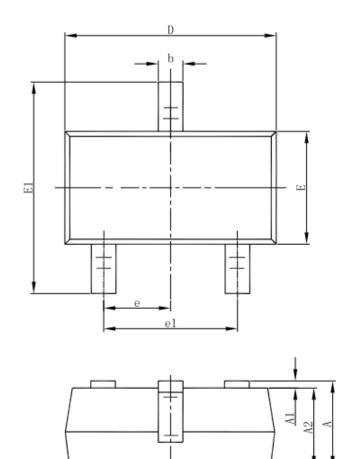
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.

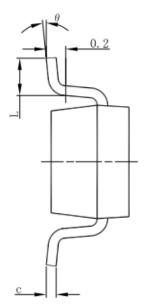

2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between VIN and Vss wiring in particular.


3. Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible.

Packaging Information

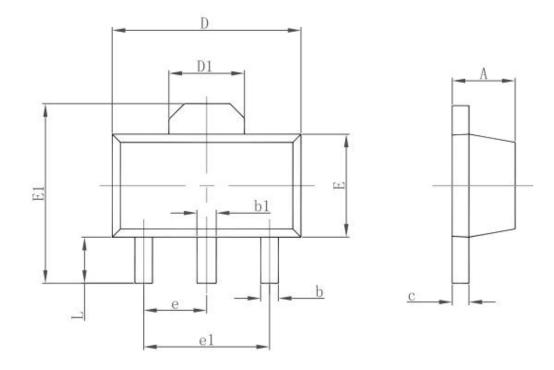
SOT23-5 Outline Dimensions



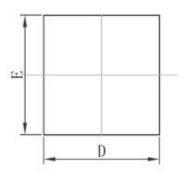


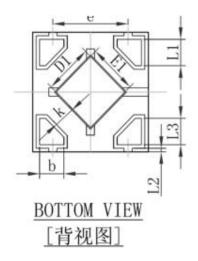
Symbol	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	<mark>0</mark> °	8°

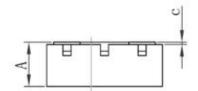
3-pin SOT23-3 Outline Dimensions



Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	<mark>8</mark> °	0°	8°


Package Information 3-pin SOT89 Outline Dimensions


Combal	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550	REF.	0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500	1.500 TYP. 0.060		TYP.
e1	3.000	3.000 TYP.		3 TYP.
L	0.900	1.200	0.035	0.047



DFN1×1-4 Outline Dimensions

<u>TOP VIEW</u> [顶视图]

Cumbel	Dimensions	In Millimeters	Dimension	ns In Inches
Symbol	Min.	Max.	Min.	Max.
A	0.335	0.405	0.013	0.016
D	0.950	1.050	0.037	0.041
E	0.950	1.050	0.037	0.041
D1	0.370	0.470	0.015	0.019
E1	0.370	0.470	0.015	0.019
k	0.17	MIN.	0.00	7MIN.
b	0.160	0.260	0.006	0.010
С	0.010	0.090	0.000	0.004
e	0.600	0.700	0.024	0.028
L1	0.185	0.255	0.007	0.010
L2	0.030	REF.	0.001	REF.
L3	0.185	0.255	0.007	0.010